Modeling Guidelines for Code Generation

R2014a

MATLAB&SIMULINK®

How to Contact MathWorks

www.mathworks.com

comp.soft-sys.matlab

www.mathworks.com/contact TS.html Technical Support

Web

Newsgroup

suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Modeling Guidelines for Code Generation

© COPYRIGHT 2010–2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2010	Online only	New for Version 1.0 (Release 2010b)
April 2011	Online only	Revised for Version 1.1 (Release 2011a)
September 2011	Online only	Revised for Version 1.2 (Release 2011b)
March 2012	Online only	Revised for Version 1.3 (Release 2012a)
September 2012	Online only	Revised for Version 1.4 (Release 2012b)
March 2013	Online only	Revised for Version 1.5 (Release 2013a)
September 2013	Online only	Revised for Version 1.6 (Release 2013b)
March 2014	Online only	Revised for Version 1.7 (Release 2014a)

Contents

	Introduct	tion
	Motivation	1-2
	Guideline Template	1-3
> [Block Considerati	ons
4		
	cgsl_0101: Zero-based indexing	2-2
	cgsl_0102: Evenly spaced breakpoints in lookup tables	2-4
	cgsl_0103: Precalculated signals and parameters	2-5
	cgsl_0104: Modeling global shared memory using data stores	2-8
	cgsl_0105: Modeling local shared memory using data stores	2-12
	Modeling Pattern Considerati	ons
3		
	cgsl_0201: Redundant Unit Delay and Memory blocks	3-2

	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals	3-8
	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks	3-10
	cgsl_0205: Signal handling for multirate models	3-16
	cgsl_0206: Data integrity and determinism in multitasking models	3-18
1 [Configuration Parameter Considerati	ions
T	cgsl_0301: Prioritization of code generation objectives	
	for code efficiency	4-2
	cgsl_0302: Diagnostic settings for multirate and multitasking models	4-3

Introduction

- "Motivation" on page 1-2
- "Guideline Template" on page 1-3

Motivation

MathWorks[®] intends this document for engineers developing models and generating code for embedded systems using Model-Based Design with MathWorks products. The document focus is on model settings, block usage, and block parameters that impact simulation behavior or code generation.

This document does not address model style or development processes. For more information about creating models in a way that improves consistency, clarity, and readability, see the "MAAB Control Algorithm Modeling". Development process guidance and additional information for specific standards is available with the IEC Certification Kit (for ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178) products.

Disclaimer While adhering to the recommendations in this document will reduce the risk that an error is introduced during development and not be detected, it is not a guarantee that the system being developed will be safe. Conversely, if some of the recommendations in this document are not followed, it does not mean that the system being developed will be unsafe.

Guideline Template

Guideline descriptions are documented, using the following template. Companies that want to create additional guidelines are encouraged to use the same template.

ID: Title XX nnnn: Title of the guideline (unique, short)

Description Description of the guideline

Prerequisites Links to guidelines that are prerequisites to this guideline

(ID: Title)

Notes Notes for using the guideline

Rationale Rational for providing the guideline

Model Title of and link to the corresponding Model Advisor check,

Advisor if a check exists

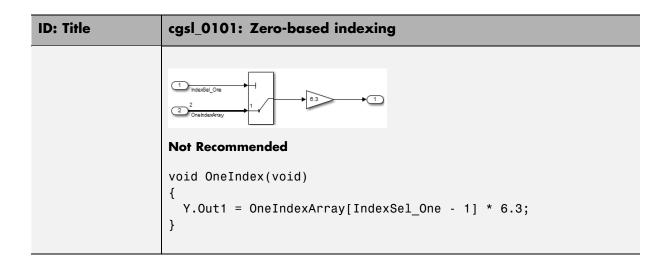
Check

References References to standards that apply to guideline

See Also Links to additional information

Last Version number of last change

Changed


Examples Guideline examples

Block Considerations

- "cgsl_0101: Zero-based indexing" on page 2-2
- "cgsl_0102: Evenly spaced breakpoints in lookup tables" on page 2-4
- "cgsl_0103: Precalculated signals and parameters" on page 2-5
- "cgsl_0104: Modeling global shared memory using data stores" on page 2-8
- "cgsl_0105: Modeling local shared memory using data stores" on page 2-12

cgsl_0101: Zero-based indexing

ID: Title	cgsl_(cgsl_0101: Zero-based indexing		
Description		ero-based indexing for blocks that require indexing. To set up based indexing, do one of the following:		
	A	Select block parameter Use zero-based contiguous for the Index Vector block.		
	В	Set block parameter Index mode to Zero-based for the following blocks:		
		Assignment		
		• Selector		
		• For Iterator		
Notes	The C	language uses zero-based indexing.		
Rationale	A, B	Use zero-based indexing for compatibility with integrated C code.		
	A, B	Results in more efficient C code execution. One-based indexing requires a subtraction operation in generated code.		
See Also	"hisl_	"hisl_0021: Consistent vector indexing method"		
Last Changed	R201	R2011b		
Examples	1 Inde	TindexGel_Zero 2 3 ZeroindexArray Recommended		
	Recon			
	_	ZeroIndex(void)		
	Y.C	Out5 = 3.0 * ZeroIndexArray[IndexSel_Zero];		

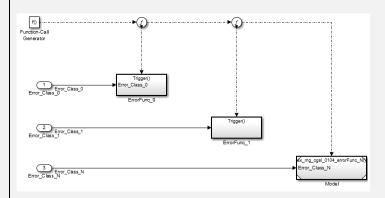
cgsl_0102: Evenly spaced breakpoints in lookup tables

ID: Title	cgsl_0	cgsl_0102: Evenly spaced breakpoints in lookup tables		
Description	When	When you use Lookup Table and Prelookup blocks,		
		With non-fixed-point data types, use evenly spaced data breakpoints for the input axis		
		With fixed-point data types, use power of two spaced breakpoints for the input axis		
Notes	-	r-spaced breakpoints can prevent generated code from including n operations, resulting in faster execution.		
Rationale	A	Improve ROM usage and execution speed.		
	В	Improve execution speed.		
	,	When compared to unevenly-spaced data, power-of-two data can		
		 Increase data RAM usage if you require a finer step size Reduce accuracy if you use a coarser step size 		
		Compared to an evenly-spaced data set, there should be minimal cost in memory or accuracy.		
Model Advisor Checks	Embe	Embedded Coder > "Identify questionable fixed-point operations"		
See Also		"Formulation of Evenly Spaced Breakpoints" in the Simulink® documentation		
Last Changed	R2010b			

cgsl_0103: Precalculated signals and parameters

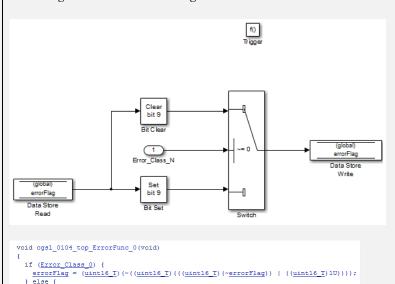
ID: Title	cgsl_0	103: Precalculated signals and parameters
Description	Precale the following	culate invariant parameters and signals by doing one of owing:
	A	Manually precalculate the values
	В	 Enable the following model optimization parameters: Optimization > Signals and Parameters > Simulation and code generation > Inline parameters
		• Optimization > Signals and Parameters > Code generation > Signals > Inline invariant signals
Notes	param minimi the nur cases, t stored. limitat calcula	culating variables can reduce local and global memory and improve execution speed. If you select Inline leters and Inline invariant signals , the code generator izes the number of run-time calculations by maximizing mber calculations completed before runtime. In some this can lead to a reduction in the number of parameters. However, the algorithms the code generator uses have ions. In some cases, the code is more compact if you te the values outside of the Simulink environment. This prove model efficiency, but can reduce model readability.
Rationale	A, B	Precalculate data, outside of the Simulink environment, to reduce memory requirements of a system and improve run-time execution.

ID: Title	cgsl_0103: Precalculated signals and parameters	
Last Changed	R2012b	
Examples	In the following model, the four paths are mathematically equivalent. However, due to algorithm limitations, the number of run-time calculations for the paths differs.	
	Path_1 = InputSignal * -3.0 * 3.0;	
	<pre>/* Product: '<root>/Product4' incorporates: * Inport: '<root>/In1' */ Path_2 = InputSignal * -9.0;</root></root></pre>	
	<pre>/* Product: '<root>/Product2' incorporates: * Constant: '<root>/Constant2' * Inport: '<root>/In1' */ Path_3 = -9.0 * InputSignal;</root></root></root></pre>	


/* Product: ' <root>/Product5' incorporates: * Constant: '<root>/Constant2' * Inport: '<root>/In1' */ Path_4 = -3.0 * InputSignal * 3.0; /* Product: '<root>/Product6' incorporates: * Constant: '<root>/Constant3' * Inport: '<root>/In1' */ Pre_Calc_1 = -9.0 * InputSignal; To maximize automatic precalculation, add signals at the end of the set of equations. Inlining data reduces the ability to tune model parameters. You should define parameters that require calibration to allow</root></root></root></root></root></root>	ID: Title	cgsl_0103: Precalculated signals and parameters
calibration. For more information, see "Parameters" in the Simulink Coder TM documentation.		* Constant: ' <root>/Constant2' * Inport: '<root>/In1' */ Path_4 = -3.0 * InputSignal * 3.0; /* Product: '<root>/Product6' incorporates: * Constant: '<root>/Constant3' * Inport: '<root>/In1' */ Pre_Calc_1 = -9.0 * InputSignal; To maximize automatic precalculation, add signals at the end of the set of equations. Inlining data reduces the ability to tune model parameters. You should define parameters that require calibration to allow calibration. For more information, see "Parameters" in the</root></root></root></root></root>

cgsl_0104: Modeling global shared memory using data stores

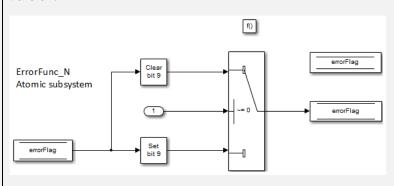
ID: Title	cgsl_0104: Modeling global shared memory using data stores	
Description	When using data store blocks to model shared memory across multiple models:	
	A	In the Configuration Parameters dialog box, on the Diagnostics pane, set Data Validity > Data Store Memory Block > Duplicate data store names to error for models in the hierarchy
	В	Define the data store using a Simulink Signal or MPT Signal object
	C	Do not use Data Store Memory blocks in the models
Notes	If multiple Data Store blocks use the same data store name within a model, then Simulink interprets each instance of the data store as having a unique local scope. Use the diagnostic Duplicate data store names to help detect unintended identifier reuse. For models intentionally using local data stores, set the diagnostic to warning. Verify that only intentional data stores are included.	
	Merge blocks, used in conjunction with subsystems operating in a mutually exclusive manor, provide a second method of modeling global data across multiple models.	
Rationale	A, B, C	Promotes a modeling pattern where a single consistent data store is used across models and a single global instance is created in the generated code.


ID: Title	cgsl_0104: Modeling global shared memory using data stores		
See Also	• "hisl_0013: Usage of data store blocks"		
	• "hisl_0015: Usage of Merge blocks"		
	• "cgsl_0302: Diagnostic settings for multirate and multitasking models"		
	• "cgsl_0105: Modeling local shared memory using data stores"		
Last Changed	R2011b		
Examples	The following examples illustrate the use of data stores as global shared memory. The data store is used to model a global fault flag. A data store is required because the flag can be set in multiple functions and used in the same execution step.		
	The top model contains three subsystems, each utilizing a data store memory. The data store is defined using a mpt.Signal object.		
	mpt.Signal: errorFlag		
	Data type: uint16 ▼ >>		
	Complexity: real ▼		
	Dimensions: 1 Dimensions mode: Fixed ▼		
	Sample time: -1 Sample mode: Sample based ▼		
	Minimum: [] Maximum: []		
	Initial value: 0 Units: Error Flag		
	Code generation options		
	Storage class: Global (Custom) ▼		
	Custom attributes		
	Memory section: □Default ▼		
	Header file: importData.h		
	Owner: cgsl_0104_top		
	Definition file: importData.c		
	Persistence level: 1		

ID: Title cgsl_0104: Modeling global shared memory using data stores

Recommended

In this example, there are no Data Store Memory blocks. The resulting code uses the same global variable for the full model.



Not Recommended

errorFlag = (uint16_T) (errorFlag | ((uint16_T)1U));

ID: Title cgsl_0104: Modeling global shared memory using data stores

In this example, a Data Store Memory block is added into the Model block subsystem. The model subsystem uses a local version of the data store. The Atomic Subsystem use a different version.

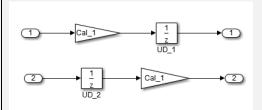

```
rtWdlrefDWork mr cgsl 0104 erro mr cgsl 0104 errorF MdlrefDWork;
void mr cgsl 0104 errorFunc N_UseDSM(const boolean T *rtu_Error_Class_N)
{
    rtDW mr cgsl 0104 errorFunc N_U *localDW =
    6(mr cgsl 0104 errorF MdlrefDWork.rtdw);
    if (*rtu_Error_Class_N) {
        localDW->errorFlag = (uint16_T) (~((uint16_T) (((uint16_T) (~localDW->errorFlag)))
        | ((uint16_T)512U)));
    } else {
        localDW->errorFlag = (uint16_T) (localDW->errorFlag | ((uint16_T)512U));
    }
}
```

cgsl_0105: Modeling local shared memory using data stores

ID: Title		cgsl_0105: Modeling local shared memory using data stores	
Description	When	using data store blocks as local shared memory:	
	A	Explicitly create the data store using a Data Store Memory block.	
	В	Deselect the block parameter option Data store name must resolve to Simulink signal object.	
	C	Consider following a naming convention for local Data Store Memory blocks.	
Notes	uninte local o	Use the diagnostic Duplicate data store names to help detect unintended identifier reuse. For models intentionally using local data stores, set the diagnostic to warning. Verify that only intentional data stores are included.	
	Data store blocks are realized as global memory in the generated code. If they are not assigned a specific storage cla they are included in the DWork structure. In the model, the data store is scoped to the defining subsystem and below. In the generated code, the data store has file scope.		
Rationale	A, B	Data store block is treated as a local instance of the data store	
	C	Provides graphical feedback that the data store is local	
See Also	_	• "cgsl_0104: Modeling global shared memory using data stores"	
		sl_0302: Diagnostic settings for multirate and ltitasking models"	
	• "his	• "hisl_0013: Usage of data store blocks"	

ID: Title	cgsl_0105: Modeling local shared memory using data stores
Last Changed	R2011b
Examples	In some instances, such as a library function, reuse of a local data store is required. In this example the local data store is defined in two subsystems.
	1 Out1 Input_1 2 Out2 LocalDataStore_1
	2 Out3 Input_2 LocsIDatsStore_2
	localFlag DSM_Loc_1
	In1 Outl 1
	The instance of localFlag is in scope within the subsystem LocalDataStore_1 and its subsystems.
	/* Block signals and states (auto storage) for system ' <root>' */ typedef struct { real_T localFlag;</root>

ID: Title	cgsl_0105: Modeling local shared memory using data stores	
	In the generated code, the data stores are part of the global DWork structure for the model. Embedded Coder® automatically assigns them unique names during the code generation process.	


Modeling Pattern Considerations

- "cgsl_0201: Redundant Unit Delay and Memory blocks" on page 3-2
- "cgsl_0202: Usage of For, While, and For Each subsystems with vector signals" on page 3-8
- "cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks" on page 3-10
- "cgsl_0205: Signal handling for multirate models" on page 3-16
- "cgsl_0206: Data integrity and determinism in multitasking models" on page 3-18

ID: Title	cgsl_0201: Redundant Unit Delay and Memory blocks				
Description	When	When preparing a model for code generation,			
	A	Remove redundant Unit Delay and Memory blocks.			
Rationale	A	Redundant Unit Delay and Memory blocks use additional global memory. Removing the redundancies from a model reduces memory usage without impacting model behavior.			
Last Changed	R201	3a			
Example	1)-	ConsolidatedState_2 Cal_1 UD_3			
	Reco	mmended: Consolidated Unit Delays			
	{ Cons	educed(void) olidatedState_2 = Matrix_UD_Test - (Cal_1 * DWork.UD_3_DSTATE + Cal_2 * ork.UD_3_DSTATE); k.UD_3_DSTATE = ConsolidatedState_2;			
	Not F	Recommended: Redundant Unit Delays			
		edundent(void)			
	{				

```
RedundantState = (Matrix_UD_Test - Cal_2 * DWork.UD_1B_DSTATE) - Cal_1 *
    DWork.UD_1A_DSTATE;
DWork.UD_1B_DSTATE = RedundantState;
DWork.UD_1A_DSTATE = RedundantState;
}
```

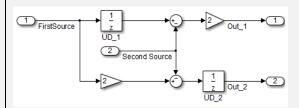
Unit Delay and Memory blocks exhibit commutative and distributive algebraic properties. When the blocks are part of an equation with one driving signal, you can move the Unit Delay and Memory blocks to a new position in the equation without changing the result.

For the top path in the preceding example, the equations for the blocks are:

```
1 Out_1(t) = UD_1(t)
```

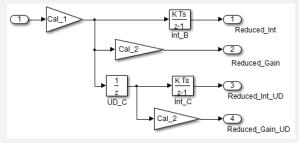
$$2 \text{ UD}_1(t) = \text{In}_1(t-1) * \text{Cal}_1$$

$$3 \text{ Out}_1(t) = \text{In}_1(t-1) * \text{Cal}_1$$


For the bottom path, the equations are:

$$2 UD_2(t) = In_2(t-1)$$

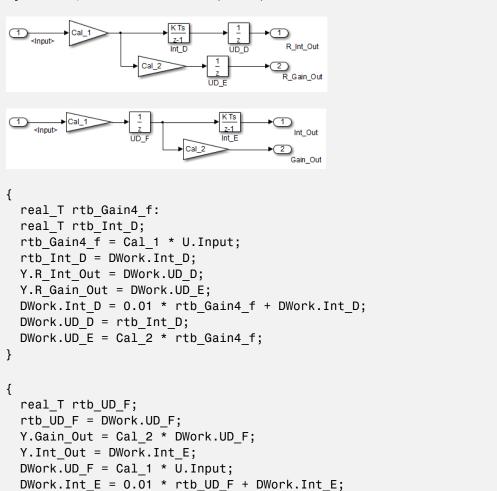
$$3 \text{ Out}_2(t) = In_2(t-1) * Cal_1$$


In contrast, if you add a secondary signal to the equations, the location of the Unit Delay block impacts the result. As the following example shows, the

location of the Unit Delay block impacts the results due the skewing of the time sample between the top and bottom paths.

In cases with a single source and multiple destinations, the comparison is more complex. For example, in the following model, you can refactor the two Unit Delay blocks into a single unit delay.

From a black box perspective, the two models are equivalent. However, from a memory and computation perspective, differences exist between the two models.

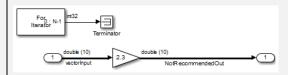

```
{
  real_T rtb_Gain4;
  rtb_Gain4 = Cal_1 * Redundant;
  Y.Redundant_Gain = Cal_2 * rtb_Gain4;
  Y.Redundant_Int = DWork.Int_A;
```

```
Y.Redundant Int UD = DWork.UD A;
 Y.Redundant Gain UD = DWork.UD B;
 DWork.Int A = 0.01 * rtb Gain4 + DWork.Int A;
 DWork.UD A = Y.Redundant Int;
  DWork.UD B = Y.Redundant Gain;
  real T rtb Gain1;
  real T rtb UD C;
 rtb Gain1 = Cal 1 * Reduced;
 rtb_UD_C = DWork.UD C;
 Y.Reduced Gain UD = Cal 2 * DWork.UD C;
 Y.Reduced Gain = Cal 2 * rtb Gain1;
 Y.Reduced Int = DWork.Int B;
 Y.Reduced Int UD = DWork.Int C;
 DWork.UD C = rtb Gain1;
 DWork.Int B = 0.01 * rtb Gain1 + DWork.Int B;
 DWork.Int_C = 0.01 * rtb_UD_C + DWork.Int_C;
}
  real T rtb Gain4 f;
  real T rtb Int D;
 rtb Gain4_f = Cal_1 * U.Input;
 rtb Int D = DWork.Int D;
 Y.R Int Out = DWork.UD D;
 Y.R Gain Out = DWork.UD E;
 DWork.Int_D = 0.01 * rtb_Gain4_f + DWork.Int_D;
 DWork.UD D = rtb Int D;
 DWork.UD_E = Cal_2 * rtb_Gain4_f;
}
In this case, the original model is more efficient. In the first code example, there
are three bits of global data, two from the Unit Delay blocks (DWork.UD A and
```

In this case, the original model is more efficient. In the first code example, there are three bits of global data, two from the Unit Delay blocks (DWork.UD_A and DWork.UD_B) and one from the discrete time integrator (DWork.Int_A). The second code example shows a reduction to one global variable generated by the unit delays (Dwork.UD_C), but there are two global variables due to the

redundant Discreate Time Integrator blocks (DWork.Int_B and DWork.Int_C). The Discreate Time Integrator block path introduces an additional local variable (rtb_UD_C) and two additional computations.

By contrast, the refactored model (second) below is more efficient.


ID: Title	cgsl_0201: Redundant Unit Delay and Memory blocks			
	The code for the refactored model is more efficient because the branches from the root signal do not have a redundant unit delay.			

cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

ID: Title	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals			
Description	When developing a model for code generation,			
	A Use For, While, and For Each subsystems for calculations that require iterative behavior or operate on a subset (frame) of data.			
	B Avoid using For, While, or For Each subsystems for basic vector operations.			
Rationale	A, B Avoid redundant loops.			
See Also	"Loop unrolling threshold" in the Simulink documentation			
	• MathWorks Automotive Advisor Board guideline db_0117: Simulink patterns for vector signals			
Last Changed	R2010b			
Examples	The recommended method for preceding calculation is to place the Gain block outside the For Subsystem. If the calculations are required as part a larger algorithm, you can avoid the nesting of for loops by using Index Vector and Assignment blocks.			
	For N-1 Interaction N-1 Intera			
	Recommended			
	<pre>for (s1_iter = 0; s1_iter < 10; s1_iter++) { RecommendedOut[s1_iter] = 2.3 * vectorInput[s1_iter]; }</pre>			

ID: Title cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

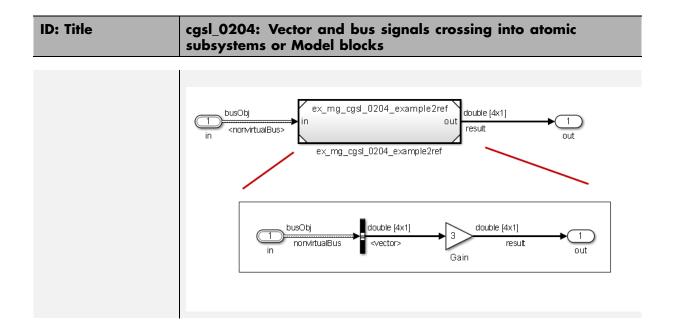
A common mistake is to embed basic vector operations in a For, While, or For Each subsystem. The following example includes a simple vector gain inside a For subsystem, which results in unnecessary nested for loops.

Not Recommended

```
for (s1_iter = 0; s1_iter < 10; s1_iter++) {
   for (i = 0; i < 10; i++) {
     NotRecommendedOut[i] = 2.3 * vectorInput[i];
   }
}</pre>
```

cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks

ID: Title		cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks				
Description	are in a	hen working with vector or bus signals and some of the signal element e in an atomic subsystem or a referenced model, use the following formation to determine how to select signal elements to minimize emory usage.				
	A	Bus or vector entering an atomic subsystem:				
		Function packaging: Non-reusable function Function interface: void void				
			Signals selected outside subsystem results in	Signal selected inside subsystem results in		
		Virtual Bus	No data copies.	No data copies.		
		Nonvirtual Bus	No data copies.	No data copies.		
		Vector	A copy of the selected signals in global block I/O structure that is used in the function.	No data copies.		
		Function packagin	ng: Non-reusable fur	nction		
		Function interface: Allow arguments				
			Signals selected outside subsystem results in	Signal selected inside subsystem results in		
		Virtual Bus	No data copies. Only the selected	No data copies. Only the selected		


ID: Title	cgsl_0204: Vector and bus signals crossing into atomic
	subsystems or Model blocks

	signals are passed to the function.	signals are passed to the function.
Nonvirtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. The whole bus is passed to the function.
Vector	A copy of the selected signals in a local variable that is passed to the function.	No data copies. The whole vector is passed to the function.

Function packaging: Reusable function			
	Signals selected outside subsystem results in	inside the	
Virtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. Only the selected signals are passed to the function.	
Nonvirtual Bus	No data copies. Only the selected signals are passed to the function. See Example 1.	No data copies. The whole bus is passed to the function.	
Vector	A copy of the selected signals in a local variable that is passed to the function.	No data copies. The whole vector is passed to the function.	

ID: Title		cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks			
	В	Bus or vector entering a Model block:			
			Signals selected outside subsystem results in	Signal selected inside subsystem results in	
		Virtual Bus	No data copies. Only selected signals are passed to the function.	A copy of the whole bus that is passed to the function.	
		Nonvirtual Bus	No data copies. Only the selected signals are passed to the function.	No data copies. The whole bus is passed to the function. See Example 2.	
		Vector	A copy of the selected signals in a local variable that is passed to the function.	No data copies. The whole vector is passed to the function.	
Notes	pred	• Depending on Embedded Coder settings (e.g. optimizations), predecessor blocks and signal storage classes, actual results may differ from the tables.			
	Virtual busses do not support global data.				
	• If the subsystem is set to Inline, data copies do not occur.			not occur.	
Rationale	A, B	Minimize RAM, ROM, and stack usage			
Last Changed	R2013a	R2013a			

ID: Title cgsl 0204: Vector and bus signals crossing into atomic subsystems or Model blocks Examples **Example 1**: Nonvirtual bus entering an atomic subsystem • Function packaging: Reusable function • Selection: Sub-signal selected outside the subsystem busObj double [4x1] double [4x1] <vector> <nonwirtualBus> <result> ex mg cgsl 0204 example1 Function name: Function Function packaging: Reusable function double [4x1] 3 nut Gain Only the selected signals are passed to the function: void Function(const real_T rtu_in[4], real_T rty_out[4]) rty out[0] = 3.0 * rtu in[0]; 8 rty out[1] = 3.0 * rtu in[1]; rty out[2] = 3.0 * rtu in[2]; 11 rty out[3] = 3.0 * rtu in[3]; 12 13 14 void ex_mg_cgsl_0204_example1_step(void) 15 Function (&nonvirtualBus.vector[0], Y.Out1); 16 17 **Example 2**: Nonvirtual bus entering a model block • Total number of instances allowed per top model: Multiple • Selection: Sub-signal selected inside the referenced model

ID: Title	cgsl_0204: Vector and bus signals crossing into atomic subsystems or Model blocks
	There are no data copies in the code for the main model. The whole bus is passed to the model reference function.
	6
	Code for the model reference function:
	<pre>4 void ex_mg_cgs1_0204_example2ref(const <u>bus0bj</u> *rtu_in, <u>real_T</u> rty_out[4]) 5 { 6 rty_out[0] = 3.0 * rtu_in->vector[0]; 7 rty_out[1] = 3.0 * rtu_in->vector[1]; 8 rty_out[2] = 3.0 * rtu_in->vector[2]; 9 rty_out[3] = 3.0 * rtu_in->vector[3]; 10 }</pre>

cgsl_0205: Signal handling for multirate models

ID: Title	cgsl_	0205: Signal handling for multirate models	
Description		For multirate models, handle the change in operation rate in one of two ways:	
	A	At the destination block, Insert a Rate Transition.	
	В	Set the parameter Solver > Automatically handle rate transition for data transfer to either Always or Whenever possible.	
Rationale	A,B	Following this guideline supports the handling of data operating at different rates.	
Note	for d	ng the parameter Solver > Automatically handle rate transition lata transfer with the setting to Whenever possible requires ting a Rate Transition block in locations indicated by Simulink.	
	for d	ng the parameter Solver > Automatically handle rate transition lata transfer to Always allows Simulink to automatically handle rate sitions by inserting a Rate Transition block. The following exceptions y:	
		ne insertion of a Rate Transition block requires rewiring the block agram.	
	• M	ultiple Rate Transition blocks are required:	
	■ The blocks' sample times are not integer multiples of each other		
	-	The blocks use different sample time offsets	
	-	One of the rates is asynchronous	
	• Ar	n inserted Rate Transition block can have multiple valid configurations.	
	For t	hese cases, manually insert a Rate Transition block or blocks.	
		Works does not recommend using Unit Delay and Zero Order Hold as for handling rate transitions.	

ID: Title	cgsl_0205: Signal handling for multirate models
Last Changed	R2011a
Examples	Not Recommended:
	In this example, the Rate Transition block is inserted at the source, not at the destination of the signal. The model fails to update because the two destination blocks (Gain and Sum) run at different rates. To fix this error, insert Rate Transition blocks at the signal destinations and remove Rate Transition blocks from the signal sources. Failure to remove the Rate Transition blocks is a common modeling pattern that might result in errors and inefficient code.
	32.1 Sample Time = 1/100 Sample Time = 1/100 Sample Time = 1/100 Sample Time = 1/200
	Recommended:
	In this example, the rate transition is inserted at the destination of the signal.
	32.1 Sample Time = 1/100 Sample Time = 1/100 Sample Time = 1/100 Sample Time = 1/100
	9.8 2 SampleTime = 1/200

cgsl_0206: Data integrity and determinism in multitasking models

ID: Title	cgsl_	0206: Data integrity and determinism in multitasking models
Description	opera	nultitasking models that are deployed with a preemptive (interruptible) ating system, protect the integrity of selected signals by doing one e following:
	A	Select the Rate Transition block parameter Ensure data integrity during data transfer.
	В	For Inport blocks in Function Called subsystems, select the block parameter Latch input for feedback signals of function-call subsystem outputs.
	To pr	otect selected signal determinism , do one of the following:
	С	Select the Rate Transition block parameter Ensure deterministic data transfer (maximum delay).
	D	• Select the model parameter Solver > Automatically handle rate transition for data transfer.
		• Set the model parameter Solver > Deterministic data transfer to either Whenever possible or Always.
Prerequisites	cgsl_0	0205:Signal handling for multirate models
Rationale	A,B, C,D	Following this guideline protects data against possible corruption of preemptive (interruptible) operating systems.
Note	Multitasking systems with a non-preemptive operating system do not require data integrity or determinism protection. In this case, clear the parameters Ensure data integrity during data transfer and Ensure deterministic data transfer .	
	execu	ring data integrity and determinism requires additional memory and ation time. To reduce this additional expense, evaluate signals to mine the level of protection that they require.

ID: Title	cgsl_0206: Data integrity and determinism in multitasking models
See Also	Rate Transition
	• "Data Transfer Problems"
Last Changed	R2011a

Configuration Parameter Considerations

- "cgsl_0301: Prioritization of code generation objectives for code efficiency" on page 4-2
- "cgsl_0302: Diagnostic settings for multirate and multitasking models" on page 4-3

cgsl_0301: Prioritization of code generation objectives for code efficiency

ID: Title	cgsl_0301: Prioritization of code generation objectives for code efficiency	
Description	Prioritize code generation objectives for code efficiency by using the Code Generation Advisor.	
	A Assign priorities to code (ROM, RAM, and Execution efficiency) efficiency objectives.	
	B Select the relative order of ROM, RAM, and Execution efficiency based on application requirements.	
	C Configure the Code Generation Advisor to run before generating code by setting Check model before generating code on the Code Generation pane of the Configuration Parameters dialog box to On (proceed with warnings) or On (stop for warnings).	
Notes	A model's configuration parameters provide control over many aspects of generated code. The prioritization of objectives specifies how configuration parameters are set when conflicts between objectives occur.	
	Prioritizing code efficiency objectives above safety objectives may remove initialization or run-time protection code (for example, saturation range checking for signals out of representable range). Review the resulting parameter configurations to verify that safety requirements are met. For more information about objective tradeoffs for each model parameter, see "Application Considerations" in the Embedded Coder documentation.	
Rationale	A, B, C When you use the Code Generation Advisor, configuration parameters conform to the objectives that you want and they are consistently enforced.	
See also	• "Set Objectives — Code Generation Advisor Dialog Box" in the Simulink Coder documentation	
	• "Manage a Configuration Set" in the Simulink documentation	
	• "hisl_0055: Prioritization of code generation objectives for high-integrity systems"	
Last Changed	R2010b	

cgsl_0302: Diagnostic settings for multirate and multitasking models

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models
Description	For multirate models using either single tasking or multitasking , set to either warning or error the following diagnostics:
	Diagnostics > Sample Time > Single task rate transition
	• Diagnostics > Sample Time > Enforce sample time specified by Signal Specification blocks
	• Diagnostics > Data Validity > Merge Block > Detect multiple driving blocks executing at the same time step
	For multitasking models, set to either warning or error the following diagnostics:
	Diagnostics > Sample Time > Multitask task rate transition
	• Diagnostics > Sample Time > Multitask conditionally executed subsystem
	• Diagnostics > Sample Time > Tasks with equal priority
	If the model contains Data Store Memory blocks, set to either Enable all as warnings or Enable all as errors the following diagnostics:
	• Diagnostics > Data Validity > Data Store Memory Block > Detect read before write
	• Diagnostics > Data Validity > Data Store Memory Block > Detect write after read
	• Diagnostics > Data Validity > Data Store Memory Block > Detect write after write
	Diagnostics > Data Validity > Data Store Memory Block > Multitask data store
Rationale	Setting the diagnostics improves run-time detection of rate and tasking errors.

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models	
See Also	• "Diagnostics Pane: Solver"	
	• "hisl_0013: Usage of data store blocks"	
Last Changed	2011a	